Benha University
Faculty of Engineering- Shoubra
Eng. Mathematics \& Physics Department
preparatory Year

- Answer all the following questions
- The Exam Consists of One page

Final Term Exam
Date: $16-1-2013$
Course: Mathematics 1 - A
Diff. \& Integral Calculus Duration: 3 hours

- No. of questions: 5
- Total Mark: 100 Marks

Marks 100
[1] Find $\mathbf{y}^{`}$ from the following:
(a) $y=3 x^{3}+3^{\sin x}$
(b) $y=\cos x^{2} \cdot \cosh 2 x$
(c) $y=\tan x^{3} \cdot \log (x+\ln x)$
(d) $y=\tan ^{-1} x^{2}+\sin ^{-2} x$
(e) $y=x^{3}+x^{y}$
(f) $\mathrm{y}=\mathrm{t} \sec \mathrm{t}, x=\mathrm{t} \sinh ^{-1} \mathrm{t}$
[2](a)Find the following limits:
(i) $\lim _{x \rightarrow 0} \frac{\sin ^{5} x}{x^{6}+\tan ^{5} x}$
(ii) $\operatorname{Lim}_{x \rightarrow 0} \frac{\log (1+2 x)}{3^{x}-4^{x}}$
(iii) $\operatorname{Lim}_{x \rightarrow \infty} \frac{x+2^{x}}{x-3^{x}}$
(b)Write the Maclurin's series of the functions: $f(x)=\frac{2}{1-2 x^{2}}, \quad g(x)=2 x+e^{3 x}$
(c)State the mean value theorem and verify it for the function: $f(x)=\frac{1}{x-1}$ in $[2,3]$.
[3]Sketch the curve of each function: (a) $f(x)=\frac{1}{3+x^{2}}$
(b) $g(x)=2^{x}+2^{-x}$
[4] Find the integrals:
(a) $\int \frac{(1+\tan x)^{5}}{1+\cos 2 x} d x$
(b) $\int x^{3} \ln x d x$
(c) $\int \frac{d x}{5+4 \cos x}$
(d)Find the area inside the circle $r=\cos \theta$ and outside the cardioid $r=1-\cos \theta$
[5] Evaluate the integrals:
(a) $\int \cos ^{4} x d x$
(b) $\int \sin ^{5} x d x$
(c) $\int \frac{x^{2}}{\left(4-x^{2}\right)^{5 / 2}} d x$
(d)Find the area of the surface of revaluation generated by revolving about x-axis the hypocycloid $\quad x=a \cos ^{3} \theta, \quad y=a \sin ^{3} \theta$
[6] Integrate:
(a) $\int_{1}^{4} \ln (x+1) d x$
(b) $\int \frac{1}{x+x^{3}} d x$
(c)Find the volume generated by revolving about y-axis the area between x-axis and the first arc of the cycloid $x=t-\sin t, \quad y=t-\cos t$

Group	Section	No.	

[1]Find the following limits:
(a) $\operatorname{Lim}_{x \rightarrow 1} \frac{x^{5}-1}{\sqrt[5]{x}-1}$
(b) $\operatorname{Lim}_{x \rightarrow 0} \frac{\sin ^{2} x}{x^{3}+x^{2}}$
(c) $\operatorname{Lim}_{x \rightarrow 0} \frac{\ln (1+x)}{3^{x}-1}$
(d) $\operatorname{Lim}_{x \rightarrow \infty} \frac{2+x^{2}}{x^{2}+3}$
[2] Find y' where
(a) $y=x^{3} \cdot 3^{x}+\log (2 x+\sec x)$
(b) $y=\cosh x^{2}+(\sin 2 x+\sinh 3 x)^{5}$
(c) $y=3+\frac{\cos x}{\tan x+\ln x}$
(d) $\mathrm{y}=\sin ^{-1} \mathrm{t}^{2}+\sin ^{-2} \mathrm{t}, \quad \mathrm{x}=\tan ^{-1} \mathrm{t}+\tanh ^{-1} \mathrm{t}$
(e) $y=e^{y}+3^{x}+\sinh (x y)$

